## Higgs Boson Beyond the SM (Alternate EW Breaking Scenarios)

## Nonstandard Higgs Decays

**HCP 08** 

## Spencer Chang NYU

See review article w/ R. Dermisek, J. Gunion, and N. Weiner for references arXiv:0801.4554



#### Motivation

- Higgs boson is last undiscovered particle of Standard Model (SM)
- Crucial discriminant of mechanism of EWSB and expected to be related to new physics
- LEP2 SM Higgs limit says it is heavier than 114.4 GeV

## LHC is prepared for SM Higgs



However, Higgses with nonstandard decays are a potential loophole in LHC's Higgs reach

## Expt'l: Electroweak Precision

Historically, a systematic preference for light Higgs masses



### Recent Tevatron Measurements



Continues the trend...

### **Combined Plot**



SM Higgs limits from indirect search (EWPOs) and direct search are slightly at odds

### Theoretical Issues

- In many BTSM theories, e.g. MSSM, Higgs mass typically below Z mass; LEP2 Higgs limit leads to finetuning at O(1%)
- This "little hierarchy" problem exponentially sensitive to the Higgs mass limit

## LEP limits on supersymmetric Higgs



# Higgs Susceptible to New Decays

- SM Higgs has a small decay width
- At 100 GeV,  $\Gamma/m \sim 10^{-5}$
- If there are new states lighter than Higgs, decays into these can dominate over standard decays; weakens SM search limit
- If these states are unstable, limits on Higgs can be weaker than 114.4 GeV

## **Quick Summary**

- Nonstandard Higgs is suggested by many uncorrelated hints from experiment and theory
- Consistent scenario
  - PEWOs: Mass is lighter than 114 GeV; SM couplings normal, production unchanged
  - Cascade decays: facilitated by new light unstable particles
  - Little Hierarchy: relieved by avoiding direct search
- Pheno implications too important to ignore



### **Implications**



Note: Largest excess at 98 GeV is consistent w/  $\xi^2$  = .1

- Reduced SM branching ratio means standard searches will need more luminosity
- Typically need at least 20 times the luminosity ~ O(100 fb<sup>-1</sup>); requiring SLHC?

## Some Simple Examples

### One New Particle

~ Mh limit

 $h \rightarrow 2X \rightarrow SM$ 

 $X \rightarrow bb, \tau\tau$ 

- Fermiophobic:

 $X \rightarrow gg, \gamma\gamma$ 

**110**, 86 Gunion et.al.

Dermisek et.al. SC et.al.

Strassler et.al.

90-100

Dobrescu et.al. SC et.al.



-RPV:  $X \rightarrow 3q$ 

80's

Carpenter et.al. Kaplan et.al.



#### **Two New Particles**

SC, Weiner Kribs et.al. Graesser De Gouvea



- X<sub>1</sub> is stable
- X<sub>2</sub> decays into X<sub>1</sub>, giving topologies w/
   both visible and missing energy h → X<sub>1</sub>X<sub>2</sub>
   → f f + MET
- Given BRs, limits roughly 100 GeV

### Nonstandard Higgs Decay Cascades

- Higgs production unchanged
- Decay cascades into many SM particles (3 or more), topologies generic enough to appear in many different searches
- Objects typically softer
- Decays of light states potentially highly displaced
- Limits from LEP2 and Tevatron generically weaker, ~ 100 GeV

# Collider Analyses to pursue in the next few years

Tevatron & LHC

### **Tevatron Standard Searches**



- Extend exclusion of SM Higgs
- Push little hierarchy problem and fine-tuning priors

### **Tevatron Nonstandard Searches**

- Some clean topologies can be searched for
- HyperCP suggests a new scalar X of mass 214.3 MeV which decays to muons
- DØ is currently searching for associated h → 2X → 4µ signal

## E.g. Signal Event by DØ



18/28

## DØ Study Under Way

- Efficiency to reconstruct 4 muons is good
- Background small
- Sensitive to X masses where muon decays dominate (<450 MeV)
- Need good ideas to look for larger X masses; e.g.  $h \rightarrow 4\tau$

## **Tevatron Message**

- Statistics suggest searches best suited are optimized for specific signals
  - Standard Model searches: Improve upon LEP limit at high and/or low masses?
  - Nonstandard searches: HyperCP motivated... any other possibilities?

## LHC Early Searches

- Continue to search for SM Higgs
- Some SM channels have efficiency for nonstandard decays
- However, could also appear in unexpected location

### VBF h → W W\*

- SM search can constrain nonstandard h
   → dilepton + MET
- Reproducing ATLAS 2004 study, get 2% efficiency (preliminary)
- Signal ~ σ \* BR \* eff ~ 5 pb \* .03 \* .02 ~ 3 fb
- Background ~ 1.33 fb (ATLAS)
- Despite kinematic differences, original cuts do not kill nonstandard decay signal

## Really Nonstandard Searches

- Sometimes displaced vertices can occur if light states are metastable
- e.g. R-parity violation  $h \rightarrow \chi \chi$

$$au_{\chi} \simeq rac{384\pi^2\cos^2 heta_w}{lpha \left|U_{21}\right|^2\lambda''^2}rac{m_{ ilde{q}}^4}{m_{\chi}^5}$$
 Carpenter et.al.
$$\sim rac{3\mu\mathrm{m}}{c\left|U_{21}\right|^2}\left(rac{10^{-2}}{\lambda''}
ight)^2\left(rac{m_{ ilde{q}}}{100~\mathrm{GeV}}
ight)^4\left(rac{30~\mathrm{GeV}}{m_{\chi}}
ight)^5$$

## LHCb as discovery machine

**Displaced Vertices!** 



Slide from David E. Kaplan Aspen '08

Require vertex

- 1) 5 tracks
- 2)  $r > 60 \mu m$
- 3)  $200 \mu m < z$
- < 0.4 m

Can produce 1000's of double displaced events in a year

### **LHCb Simulation**

LHCb simulated data after acceptance requirements and cuts:



Slide from David E. Kaplan



Could reconstruct the Higgs and measure its mass with ~10% accuracy.

N. Gueissaz, (2007) CERN-THESIS-2007-038 Aspen Winter '08

## LHC Message

- Signals potentially appear in unexpected places
  - In SM search: VBF h → W W\* is sensitive to h → dilepton + MET
  - LHCb: advantage for decays with highly displaced vertices
- LHC statistics allows searches to be run unoptimized to be inclusive to more signals

### No Higgs after 30 fb<sup>-1</sup>?

 Check standard searches for excesses



- Use available info to design searches for nonstandard Higgses
  - e.g. SUSY events can determine if Higgs decays into superpartners and its topology

### Conclusion



- Higgs is crucial element of EWSB
- Nonstandard Higgs decays make standard searches ineffective
- Higgs can appear in unexpected places, so it's best to be prepared